
Introduction to Cyclic Proofs

Liron Cohen

LMW 2022 @CSL

cliron@cs.bgu.ac.il

mailto:cliron@cs.bgu.ac.il

Q: How do we know something is true?

A: We prove it

Q: How do we know that we have a proof?

A: We need to define what it means to be a proof.  
A proof is a logical sequence of arguments, starting
from some initial assumptions (axioms)

Q: How do we know that we have a valid sequence of
arguments? Can any sequence be a proof? E.g.

 All humans are mortal

	 All Greeks are human

 Therefore I am a Greek!

A: No! We must think harder about valid ways of reasoning

Aristotle

384 – 322 BC

Euclid

~300 BC

The Good Old Notion of
a Proof

How Do We Prove?
Proof by cases

Proof by contradiction

Proof by Induction

…

Classical Proof

Constructive Proof

Intuitionistic proof

…

Proofs using sequent calculus

Proofs in natural deduction

…

“A�proof�is�a�proof.��
What�kind�of�a�proof?��
It's�a�proof.��

A�proof�is�a�proof,��
and�when�you�have�a�good�proof,��
it's�because�it's�proven.”�
—�Jean�Chretien��

What is a Formal Proof?

Our Goal

Soundness: If the axioms are sound and every inference rule is sound,

then every proof is sound.

The System LK [Gentzen, ’34]

The System LK [Gentzen, ’34]

Cyclic Reasoning

Cyclic Proofs

A cyclic pre-proof is a derivation tree with a backlink
from each open leaf (“bud”) to an identical “companion”.

Cyclic Proof?

Is this a valid pre-proof?

=> 0=1

=> 0=1, 0=1

=> 0=1

(cntR)

(wkR)

The cycle does not make any “progress”

How can we rule out such pre-proofs?

“All�opinions�are�not�
equal.�Some�are�a�very�
great�deal�more�robust,�
sophisticated�and�well�
supported�in�logic�and�
argument�than�others”�

-Douglas�Adams

Infinite Descent
“Because�the�ordinary�methods�now�in�the�books�were�insufficient�for�
demonstrating�such�difficult�propositions,�I�finally�found�a�totally�unique�
route�for�arriving�at�them�.�.�.�which�I�called�infinite�descent�.�.�.”�

-Pierre�de�Fermat,�1659

Theorem: is not rational2

Proof: Suppose for contradiction that for . Then, .

Consequently , so that:

Define: and . Then, .

Since , and so .

But then we have such that and .

2 =
x
y

x, y ∈ ℕ x2 = 2y2

x(x − y) = y(2y − x)
2y − x
x − y

=
x
y

= 2

x′￼= 2y − x y′￼= x − y 2 =
x′￼

y′￼

y < 2y = x < 2y 0 < x − y = y′￼< y

x′￼, y′￼∈ ℕ 2 =
x′￼

y′￼
y′￼< y

Infinite�descent�
from�y

Soundness Criteria

We trace syntactic elements τ (terms/formulas)
through judgements

At certain points, there is a notion of ‘progression’

Each infinite path must admit some infinite descent

The Infinite Descent condition is an ω-regular property
(i.e decidable)

A�cyclic�proof�=�
A�pre-proof�
+�

Soundness�condition�
(for�every�infinite�path�there�is�an�
infinitely�progressing�trace�along�

some�tail)

Soundness via Infinite Descent

Assume for contradiction that the conclusion is invalid

Local soundness ⇒ counter-models M1, M2, M3, ...

We demonstrate a mapping into well-founded (D,<) s.t.

 for progression points

Infinite Descent condition ⇒ infinitely descending chain in D!

[[M1]]J1[τ1] ≤ [[M2]]J2[τ2] ≤ [[M3]]J3[τ3] ≤ …

[[M2]]J2[τ2] < [[M3]]J3[τ3]

Proof Example
⇒ N0

Nx ⇒ Nsx

⇒ E0
Ex ⇒ Osx
Ox ⇒ Esx

Consider these inductive definitions
of predicates N, E, O:

These definitions generate
case-split rules, e.g., for E:

Γ, t = 0 ⇒ Δ Γ, t = sx, Ox ⇒ Δ
Γ, Et ⇒ Δ

Open Questions

Can we prove more?

In general, cyclic systems subsume explicit system

But are they really stronger?

Does the translation between the two forms
preserves important patterns (e.g. modularity)?

Can we prove better?
Elegance

Automation/proof search

Separating termination from correctness

Inductive invariants

Can we check soundness better?
Traditionally managed by encoding it as the
inclusion between two Büchi automata

exponential blow-up of execution time on the number of nodes

lacks transparency and flexibility

Better alternative intrinsic criteria which operate
directly on the proof tree

improved complexity

direct explanation of why the condition holds/fails

Can we get more automated support?

Provers (automated/semi-automated) currently offer
little or no support for cyclic reasoning

exceptions: Cyclist

 Major verification efforts are missing the great
potential of cyclic reasoning for lighter, more legible
and more automated proofs.

“Proving�theorems�is�not�for�the�
mathematicians�anymore:�with�
theorem�provers,�it's�now�a�job�for�

the�hacker.”�
�—�Martin�Rinard

