Introduction to Cyclic Proofs Liron Cohen

LMW 2022 @CSL

cliron@cs.bgu.ac.il

Q: How do we know something is true?A: We prove it

Q: How do we know that we have a proof?

A: We need to define what it means to be a proof. A proof is a logical sequence of arguments, starting from some initial assumptions (axioms)

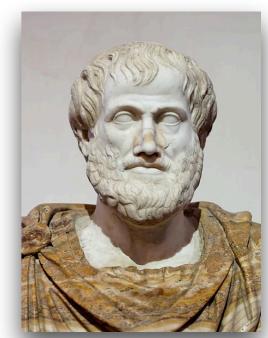
Q: How do we know that we have a valid sequence of arguments? Can any sequence be a proof? E.g.

All humans are mortal

All Greeks are human

Therefore I am a Greek!

A: No! We must think harder about valid ways of reasoning



Aristotle 384 – 322 BC

Euclid ~300 BC

The Good Old Notion of a Proof

How Do We Prove?

. . .

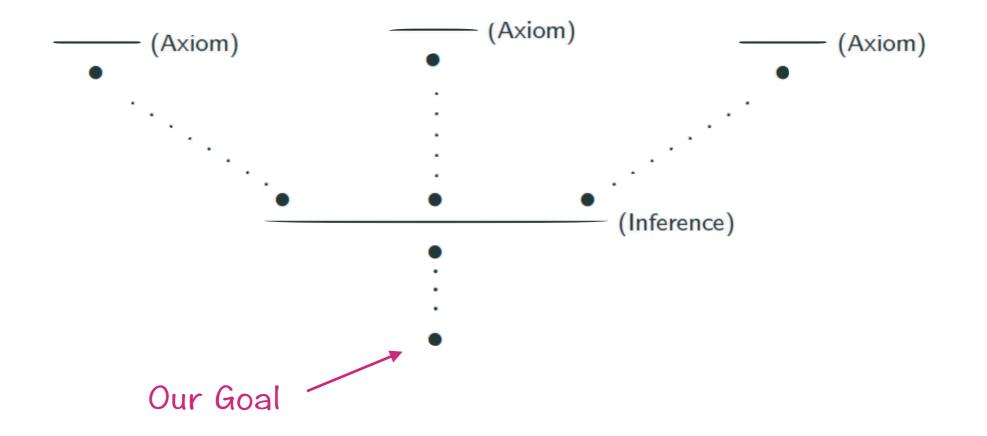
. . .

"A proof is a proof. what kind of a proof? It's a proof. A proof is a proof, and when you have a good proof, it's because it's proven." — Jean chretien Proof by cases Proof by contradiction Proof by Induction

Classical Proof Constructive Proof Intuitionistic proof

Proofs using sequent calculus Proofs in natural deduction

What is a Formal Proof?



<u>Soundness</u>: If the axioms are sound and every inference rule is sound, then every proof is sound.

The System LK [Gentzen, '34]

$$\frac{\psi, \Gamma \Rightarrow \Delta}{\varphi \land \psi, \Gamma \Rightarrow \Delta} (\land L_1) \qquad \qquad \frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi \land \psi, \Gamma \Rightarrow \Delta} (\land L_2) \qquad \qquad \frac{\Gamma \Rightarrow \Delta, \varphi \ \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \land \psi} (\land R)$$

$$\frac{\varphi, \Gamma \Rightarrow \Delta \ \psi, \Gamma \Rightarrow \Delta}{\varphi \lor \psi, \Gamma \Rightarrow \Delta} (\lor L) \qquad \frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \varphi \lor \psi} (\lor R_1) \qquad \frac{\Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \lor \psi} (\lor R_2)$$

$$\frac{\Gamma \Rightarrow \Delta, \varphi \ \psi, \Gamma \Rightarrow \Delta}{\varphi \to \psi, \Gamma \Rightarrow \Delta} (\to L)$$

$$\frac{\Gamma \Rightarrow \Delta, \varphi}{\neg \varphi, \Gamma \Rightarrow \Delta} (\neg L)$$

$$\frac{\varphi\left\{\frac{t}{x}\right\}, \Gamma \Rightarrow \Delta}{\forall x\varphi, \Gamma \Rightarrow \Delta} (\forall L)$$

$$\frac{\varphi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \rightarrow \psi} (\rightarrow R)$$

$$\frac{\varphi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg \varphi} (\neg R)$$

$$\frac{\Gamma \Rightarrow \Delta, \varphi\left\{\frac{y}{x}\right\}}{\Gamma \Rightarrow \Delta, \forall x\varphi} \left(\forall R\right)^*$$

$$\frac{\Gamma \Rightarrow \Delta, \varphi\left\{\frac{t}{x}\right\}}{\Gamma \Rightarrow \Delta, \exists x\varphi} \, (\exists R)$$

 $\frac{\varphi\left\{\frac{y}{x}\right\}, \Gamma \Rightarrow \Delta}{\exists x\varphi, \Gamma \Rightarrow \Delta} \left(\exists L\right)^*$

The System LK [Gentzen, '34]

$$\frac{\Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} (wkL)$$

 $\frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \varphi} (wkR)$

$\varphi,\varphi,\Gamma\Rightarrow \Delta$	I COTI I
$\varphi, \Gamma \Rightarrow \Delta$	(CIIL)

$$\frac{\Gamma \Rightarrow \Delta, \varphi, \varphi}{\Gamma \Rightarrow \Delta, \varphi} (cntR)$$

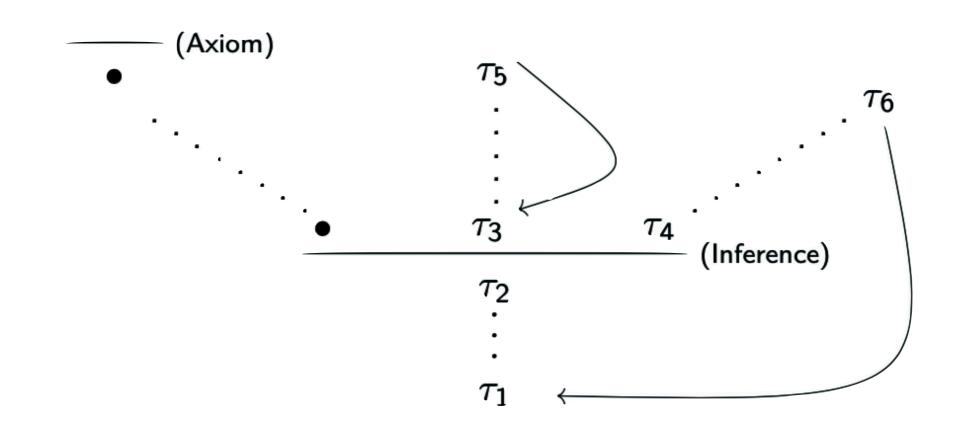
$$\frac{\Gamma \Rightarrow \Delta, \varphi \quad \varphi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} (cut)$$

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma\left\{\frac{\vec{s}}{\vec{x}}\right\} \Rightarrow \Delta\left\{\frac{\vec{s}}{\vec{x}}\right\}} (sub)$$

$$\frac{1}{\varphi \Rightarrow \varphi} \text{ (id)}$$

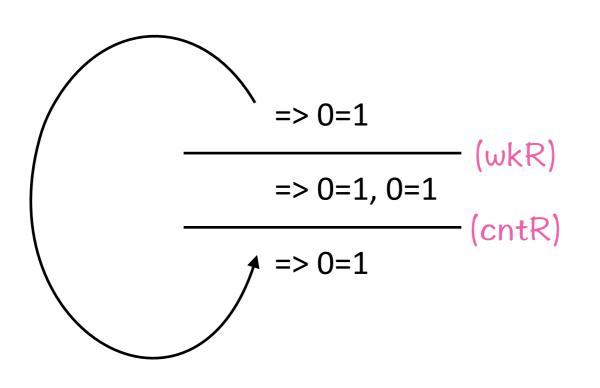
Cyclic Reasoning

Cyclic Proofs



A cyclic pre-proof is a derivation tree with a backlink from each open leaf ("bud") to an identical "companion".

Cyclic Proof?



"All opinions are not equal. Some are a very great deal more robust, sophisticated and well supported in logic and argument than others"

-Douglas Adams

Is this a valid pre-proof?

The cycle does not make any "progress"

How can we rule out such pre-proofs?

Infinite Descent

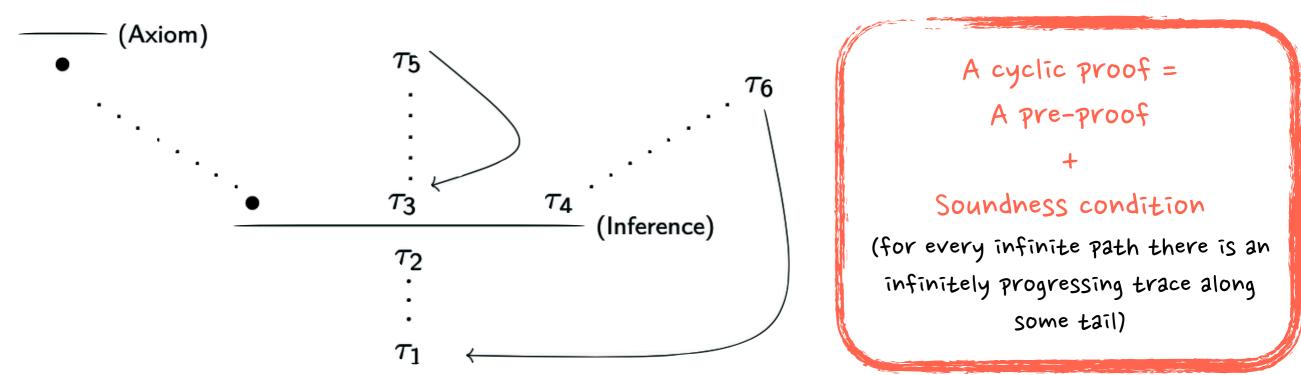
"Because the ordinary methods now in the books were insufficient for demonstrating such difficult propositions, I finally found a totally unique route for arriving at them . . . which I called infinite descent . . ."

-Pierre de Fermat, 1659

<u>Theorem</u>: $\sqrt{2}$ is not rational

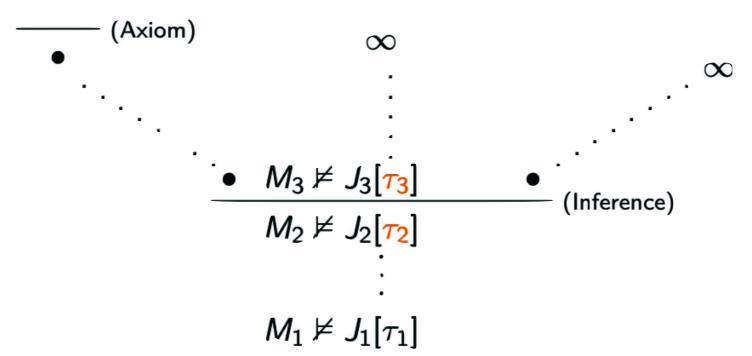
<u>Proof</u>: Suppose for contradiction that $\sqrt{2} = \frac{x}{y}$ for $x, y \in \mathbb{N}$. Then, $x^2 = 2y^2$. Consequently x(x - y) = y(2y - x), so that: $\frac{2y - x}{x - y} = \frac{x}{y} = \sqrt{2}$ Define: x' = 2y - x and y' = x - y. Then, $\sqrt{2} = \frac{x'}{y'}$. Since $y < \sqrt{2}y = x < 2y$, and so 0 < x - y = y' < y. But then we have $x', y' \in \mathbb{N}$ such that $\sqrt{2} = \frac{x'}{y'}$ and y' < y.

Soundness Criteria



- We trace syntactic elements τ (terms/formulas) through judgements
 - At certain points, there is a notion of 'progression'
- Each infinite path must admit some infinite descent
- The Infinite Descent condition is an w-regular property (i.e decidable)

Soundness via Infinite Descent



Assume for contradiction that the conclusion is invalid
Local soundness \Rightarrow counter-models M₁, M₂, M₃, ...

We demonstrate a mapping into well-founded (D,<) s.t.</p>

$$[[M_1]]_{J_1[\tau_1]} \le [[M_2]]_{J_2[\tau_2]} \le [[M_3]]_{J_3[\tau_3]} \le \dots$$

• $[[M_2]]_{J_2[\tau_2]} < [[M_3]]_{J_3[\tau_3]}$ for progression points

Infinite Descent condition \Rightarrow infinitely descending chain in D!

Proof Example

Consider these inductive definitions of predicates N, E, O:

 $\Rightarrow E0$ $\Rightarrow N0$ $Ex \Rightarrow Osx$ $Nx \Rightarrow Nsx$

 $Ox \Rightarrow Esx$

These definitions generate case-split rules, e.g., for E:

$$\frac{\Gamma, t = 0 \Rightarrow \Delta \qquad \Gamma, t = sx, Ox \Rightarrow \Delta}{\Gamma, Et \Rightarrow \Delta}$$

$$\frac{\begin{bmatrix} x \Rightarrow Nx \\ Ez \Rightarrow Nz \\ (Subst) \\ Ez \Rightarrow Nz \\ (NR_2) \\ Ez \Rightarrow Nsz \\ (=L) \\ y = sz, Ez \Rightarrow Ny \\ (Case O) \\ \hline y \Rightarrow Ny \\ (Case O) \\ \hline 0y \Rightarrow Ny \\ (Subst) \\ (=L) \\ \hline y = sz, Ez \Rightarrow Ny \\ (Case O) \\ \hline y \Rightarrow Ny \\ (Case O) \\ \hline x = sy, Oy \Rightarrow Nx \\ (Case E) \\ \hline Ex \Rightarrow Nx \\ \uparrow \\ \hline \end{bmatrix}$$

Open Questions

Can we prove more?

In general, cyclic systems subsume explicit system

But are they really stronger?

Opes the translation between the two forms preserves important patterns (e.g. modularity)?

Can we prove better?

Elegance

Automation/proof search

Separating termination from correctness

Inductive invariants

Can we check soundness better?

- Traditionally managed by encoding it as the inclusion between two Büchi automata
 - exponential blow-up of execution time on the number of nodes
 - lacks transparency and flexibility

- Better alternative intrinsic criteria which operate directly on the proof tree
 - improved complexity
 - direct explanation of why the condition holds/fails

Can we get more automated support?

Provers (automated/semi-automated) currently offer little or no support for cyclic reasoning

exceptions: Cyclist

Major verification efforts are missing the great potential of cyclic reasoning for lighter, more legible and more automated proofs.

> "Proving theorems is not for the mathematicians anymore: with theorem provers, it's now a job for the hacker." — Martin Rinard