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Q: How do we know something is true?


A: We prove it


Q: How do we know that we have a proof?


A: We need to define what it means to be a proof.  
A proof is a logical sequence of arguments, starting 
from some initial assumptions (axioms)  


Q: How do we know that we have a valid sequence of 
arguments? Can any sequence be a proof?  E.g.


               All humans are mortal


	            All Greeks are human


               Therefore I am a Greek!


A: No! We must think harder about valid ways of reasoning

Aristotle

384 – 322 BC

Euclid

~300 BC



The Good Old Notion of 
a Proof



How Do We Prove?
Proof by cases 

Proof by contradiction 

Proof by Induction

…


Classical Proof 

Constructive Proof 

Intuitionistic proof

…


Proofs using sequent calculus 

Proofs in natural deduction

…

“A�proof�is�a�proof.��
What�kind�of�a�proof?��
It's�a�proof.��

A�proof�is�a�proof,��
and�when�you�have�a�good�proof,��
it's�because�it's�proven.”�
—�Jean�Chretien��



What is a Formal Proof?

Our Goal

Soundness: If the axioms are sound and every inference rule is sound, 

then every proof is sound.



The System LK  [Gentzen, ’34]



The System LK  [Gentzen, ’34]



Cyclic Reasoning



Cyclic Proofs

A cyclic pre-proof is a derivation tree with a backlink 
from each open leaf (“bud”) to an identical “companion”.



Cyclic Proof?

Is this a valid pre-proof?

=> 0=1

=> 0=1, 0=1

=> 0=1

(cntR)

(wkR)

The cycle does not make any “progress”

How can we rule out such pre-proofs?

“All�opinions�are�not�
equal.�Some�are�a�very�
great�deal�more�robust,�
sophisticated�and�well�
supported�in�logic�and�
argument�than�others”�

-Douglas�Adams



Infinite Descent
“Because�the�ordinary�methods�now�in�the�books�were�insufficient�for�
demonstrating�such�difficult�propositions,�I�finally�found�a�totally�unique�
route�for�arriving�at�them�.�.�.�which�I�called�infinite�descent�.�.�.”�

-Pierre�de�Fermat,�1659

Theorem:  is not rational2

Proof: Suppose for contradiction that   for  .  Then,  .


Consequently , so that:  


Define:  and . Then, .


Since  , and so .


But then we have  such that  and .

2 =
x
y

x, y ∈ ℕ x2 = 2y2

x(x − y) = y(2y − x)
2y − x
x − y

=
x
y

= 2

x′￼= 2y − x y′￼= x − y 2 =
x′￼

y′￼

y < 2y = x < 2y 0 < x − y = y′￼< y

x′￼, y′￼∈ ℕ 2 =
x′￼

y′￼
y′￼< y

Infinite�descent�
from�y



Soundness Criteria

We trace syntactic elements τ (terms/formulas) 
through judgements 


At certain points, there is a notion of ‘progression’ 


Each infinite path must admit some infinite descent 


The Infinite Descent condition is an ω-regular property 
(i.e decidable)

A�cyclic�proof�=�
A�pre-proof�
+�

Soundness�condition�
(for�every�infinite�path�there�is�an�
infinitely�progressing�trace�along�

some�tail)



Soundness via Infinite Descent 

Assume for contradiction that the conclusion is invalid 


Local soundness ⇒ counter-models M1, M2, M3, ... 


We demonstrate a mapping into well-founded (D,<) s.t.  




 for progression points


Infinite Descent condition ⇒ infinitely descending chain in D! 

[[M1]]J1[τ1] ≤ [[M2]]J2[τ2] ≤ [[M3]]J3[τ3] ≤ …

[[M2]]J2[τ2] < [[M3]]J3[τ3]



Proof Example
⇒ N0

Nx ⇒ Nsx

⇒ E0
Ex ⇒ Osx
Ox ⇒ Esx

Consider these inductive definitions 
of predicates N, E, O:

These definitions generate 
case-split rules, e.g., for E:

Γ, t = 0 ⇒ Δ Γ, t = sx, Ox ⇒ Δ
Γ, Et ⇒ Δ



Open Questions



Can we prove more?

In general, cyclic systems subsume explicit system


But are they really stronger?

Does the translation between the two forms 
preserves important patterns (e.g. modularity)?



Can we prove better?
Elegance


Automation/proof search


Separating termination from correctness


Inductive invariants



Can we check soundness better?
Traditionally managed by encoding it as the 
inclusion between two Büchi automata


exponential blow-up of execution time on the number of nodes


lacks transparency and flexibility


Better alternative intrinsic criteria which operate 
directly on the proof tree


improved complexity


direct explanation of why the condition holds/fails



Can we get more automated support?

Provers (automated/semi-automated) currently offer 
little or no support for cyclic reasoning 


exceptions: Cyclist


 Major verification efforts are missing the great 
potential of cyclic reasoning for lighter, more legible 
and more automated proofs.

“Proving�theorems�is�not�for�the�
mathematicians�anymore:�with�
theorem�provers,�it's�now�a�job�for�

the�hacker.”�
�—�Martin�Rinard


