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Graph algorithms

Area of graph algorithms:

− I: A graph G and some parameters k̄.

− Q: Decide the existence of some object based on G and k̄.

Examples:

− Clique: Does G have k pairwise adjacent vertices?

− 3-Coloring: Does G have a proper coloring using 3 colors?

− Hamiltonicity: Does G have a cycle visiting every vertex once?
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Meta-theorems

Typical: Take a problem P , solve it e�iciently on some class C of graphs.

− O�en highly non-trivial and problem-dependent.

− Common denominators: techniques that work for certain problems.

Idea: Look at classes of problems.

− For instance, all problems expressible in a logic L.

Theorem (Meta-theorem template)

Every problem expressible in L can be solved in time Blah

on every graph from C .

Explains the range of applicability of certain techniques.

Model-checking L on C : Given ϕ ∈ L and G ∈ C , decide G |= ϕ.
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Logic on graphs

Cliquek = ∃x1 ∃ x2 . . . ∃ xk
∧

i 6=j [(xi 6= xj) ∧ adj(xi, xj)]

First-Order logic (FO):

− variables for single vertices, can check adjacency

3-Coloring = ∃A∃B∃C (A,B,C) is a partition of V and

every two adjacent vertices are colored di�erently

Monadic Second-Order logic, first variant (MSO1):

− variables for single vertices and sets of vertices, can check membership

Hamiltonicity = ∃S ⊆ E S is connected and

every vertex is incident to exactly two edges of S

Monadic Second-Order logic, second variant (MSO2):

− vars for (sets of) vertices & edges, can check membership & incidence
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MSO2 on graphs: complexity

Hamiltonicity is NP-complete MC MSO2 intractable on general graphs

Obs: Every MSO2-definable problem can be decided in time O(n)

on colored paths.

That is, model-checking MSO2 in time f (ϕ) · n.

Sketch:

− Colored path Word w ∈ Σ?
.

− Sentence ϕ defining the problem Finite automaton A
− Just run A on w in linear time.

a b b c b a c c a
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Treewidth

The same idea will work on colored trees. (MSO on trees = tree automata)

Q: How far can we go?

Definition (Treewidth)

A graph has treewidth k if it can be confined

to a tree of bags, each of size 6 k.

Theorem (Courcelle)

For every fixed k, every MSO2-definable problem can be decided

in linear time on graphs of treewidth 6 k.
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Grid minors

Is this it? Can we go beyond bounded treewidth?

Q: How do graphs of large treewidth look like?

Theorem (Excluded Grid Minor)

There is a function f : N→ N such that if the treewidth of G

is larger than f (k), then G contains a k × k grid minor.
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Complexity of MSO2 model-checking

Consider a class of graphs C .

C has bnd treewidth⇒
Every MSO2-definable problem solvable in linear time

C has unbnd treewidth⇒
C contains arbitrarily large grid minors ⇒?

Model-checking MSO2 on colored graphs from C

is as hard as on general graphs.

Reason: Encode an arbitrary

adjacency matrix in a grid minor.
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Dichotomy

Consider a graph class C . Then either:

C has bounded treewidth. C has arbitrarily large grid minors.

MSO2 model-checking on colored C

in time f (ϕ) · n.

MSO2 model-checking on colored C

as hard as on general graphs.

In colored C one can MSO2-interpret

only tree-like graphs.

In colored C one can MSO2-interpret

all graphs.

...
...

graph theory

algorithms

finite model theory
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Other logic

MSO2 bnd treewidth

⊂ ⊃

MSO1
bnd cliquewidth

⊂

FO ??nowhere dense
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Nowhere denseness

Definition (Nowhere denseness)

A class of graphs C is nowhere dense if for every d ∈ N there is t(d)

such that graphs from C exclude the d-subdivision of the clique Kt(d).

Examples:

− planar graphs;

− graphs with a fixed excluded minor;

− graphs with maximum degree 6 15;

− graphs of treewidth 6 15.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is a class of graphs closed under taking subgraphs. Then:

− C nowhere dense⇒MC FO in time f (ϕ) · n1+ε
for any ε > 0.

− C somewhere dense⇒MC FO as hard as on general graphs.
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Towards a characterization for FO

The theorem of GKS originates from the theory of Sparsity.

− A wealth of graph-theoretic tools for nowhere dense classes.

There are classes of dense graphs where FO model-checking is tractable.

− cliques;

− for any nowhere dense C , edge-complements of C ;

− any class of bounded cliquewidth.

Q: Proposition for ?? in the following:

FO ??

Definition (Monadic dependence)

A class of graphs C is monadically dependent if one cannot

FO-interpret all graphs in colored graphs from C .
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Monadic dependence

(Monadically) dependent (NIP) and (monadically) stable theories

are a central object of studies in model theory.

− There is a toolbox... but applies to an inherently infinite se�ing.

− For example, nowhere dense = superflat.

Goal: Understand it and apply the toolbox to classes of finite graphs.

So far...
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Intermediate logic

MSO2 bnd treewidth

⊂ ⊃

MSO1
bnd cliquewidth

⊂

FO nowhere dense

Can we find natural variants of logic between FO and MSO?

Proposition: logic FO + conn corresponds to topological-minor-free classes.

FO + conn top-minor-free

⊂
⊂ ⊃
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FO + conn

Def: G |= conn(s, t, u1, . . . , uk)

if s and t can be connected by a path avoiding u1, . . . , uk .

s t

u1

u2

u3

u4

u5

FO + conn is FO where you can also use conn predicates.

See [Bojańczyk; 21
+

] and [Schirrmacher, Siebertz, Vigny; this CSL!].

Def: C is top-minor-free if there is t ∈ N such that

no graph G ∈ C contains a subdivision of Kt .

Theorem (P, Schirrmacher, Siebertz, Toruńczyk, Vigny; 21
+

)

Suppose C is a class of graphs closed under taking subgraphs. Then:

− C top-minor-free⇒MC FO + conn in time f (ϕ) · n.

− C not top-minor-free⇒?
MC FO + conn hard as on general graphs.

Key: A known decomposition into parts where FO + conn reduces to FO.
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Wrap-up

Start: questions originating from graph algorithms.

We formulated them in logic.  Complexity of model-checking.

For MSO2, a fundamental division line in graph theory

 division lines in complexity and in finite model theory.

For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes  Notions from model theory.

A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets.

Mathematics is not only about depth, but also about connections.

− Don’t be afraid to try multiple new areas.

− Learning by trying.

Thanks for a�ention!
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