Logic meets

graph theory and algorithm design

Michat Pilipczuk

University of Warsaw

Logic Mentoring Workshop @ CSL 2022
February 14, 2022



Graph algorithms

Michat Pilipczuk Logic meets graphs and algorithms 1/ 15



Graph algorithms

Area of graph algorithms:

Michat Pilipczuk Logic meets graphs and algorithms 1/ 15



Graph algorithms

Area of graph algorithms:

— I: A graph G and some parameters k.

Michat Pilipczuk Logic meets graphs and algorithms 1/ 15



Graph algorithms

Area of graph algorithms:
— I: A graph G and some parameters k.

— Q: Decide the existence of some object based on G and k.

Michat Pilipczuk Logic meets graphs and algorithms 1/ 15



Graph algorithms

Area of graph algorithms:
— I: A graph G and some parameters k.

— Q: Decide the existence of some object based on G and k.

Examples:

Michat Pilipczuk Logic meets graphs and algorithms 1/ 15



Graph algorithms

Area of graph algorithms:

— I: A graph G and some parameters k.

— Q: Decide the existence of some object based on G and k.

Examples:

— CriQuE: Does G have k pairwise adjacent vertices?

Michat Pilipczuk Logic meets graphs and algorithms

1/ 15



Graph algorithms

Area of graph algorithms:
— I: A graph G and some parameters k.

— Q: Decide the existence of some object based on G and k.

Examples:
— CriQuE: Does G have k pairwise adjacent vertices?

— 3-CoLoRING: Does G have a proper coloring using 3 colors?

Michat Pilipczuk Logic meets graphs and algorithms 1/ 15



Graph algorithms

Area of graph algorithms:
— I: A graph G and some parameters k.

— Q: Decide the existence of some object based on G and k.

Examples:
— CriQuE: Does G have k pairwise adjacent vertices?
— 3-CoLoRING: Does G have a proper coloring using 3 colors?

— HamiLtoniciTy: Does G have a cycle visiting every vertex once?

Michat Pilipczuk Logic meets graphs and algorithms

1/ 15



Meta-theorems

Michat Pilipczuk Logic meets graphs and algorithms 2/ 15



Meta-theorems

Typical: Take a problem P, solve it efficiently on some class € of graphs.

Michat Pilipczuk Logic meets graphs and algorithms 2/ 15



Meta-theorems

Typical: Take a problem P, solve it efficiently on some class € of graphs.

— Often highly non-trivial and problem-dependent.

Michat Pilipczuk Logic meets graphs and algorithms 2/ 15



Meta-theorems

Typical: Take a problem P, solve it efficiently on some class € of graphs.
— Often highly non-trivial and problem-dependent.

— Common denominators: techniques that work for certain problems.

Michat Pilipczuk Logic meets graphs and algorithms 2/ 15



Meta-theorems

Typical: Take a problem P, solve it efficiently on some class € of graphs.
— Often highly non-trivial and problem-dependent.

— Common denominators: techniques that work for certain problems.

Idea: Look at classes of problems.

Michat Pilipczuk Logic meets graphs and algorithms 2/ 15



Meta-theorems

Typical: Take a problem P, solve it efficiently on some class € of graphs.
— Often highly non-trivial and problem-dependent.

— Common denominators: techniques that work for certain problems.

Idea: Look at classes of problems.

— For instance, all problems expressible in a logic L.

Michat Pilipczuk Logic meets graphs and algorithms 2/ 15



Meta-theorems

Typical: Take a problem P, solve it efficiently on some class € of graphs.
— Often highly non-trivial and problem-dependent.

— Common denominators: techniques that work for certain problems.

Idea: Look at classes of problems.

— For instance, all problems expressible in a logic L.

Theorem (Meta-theorem template)
Every problem expressible in £ can be solved in time Blah

on every graph from €.

Michat Pilipczuk Logic meets graphs and algorithms 2/ 15



Meta-theorems

Typical: Take a problem P, solve it efficiently on some class € of graphs.
— Often highly non-trivial and problem-dependent.

— Common denominators: techniques that work for certain problems.

Idea: Look at classes of problems.

— For instance, all problems expressible in a logic L.

Theorem (Meta-theorem template)
Every problem expressible in £ can be solved in time Blah

on every graph from €.

Explains the range of applicability of certain techniques.

Michat Pilipczuk Logic meets graphs and algorithms 2/ 15



Meta-theorems

Typical: Take a problem P, solve it efficiently on some class € of graphs.
— Often highly non-trivial and problem-dependent.

— Common denominators: techniques that work for certain problems.

Idea: Look at classes of problems.

— For instance, all problems expressible in a logic L.

Theorem (Meta-theorem template)

Every problem expressible in £ can be solved in time Blah

on every graph from €.

Explains the range of applicability of certain techniques.

Model-checking £ on %: Given ¢ € L and G € %, decide G |~ .

Michat Pilipczuk Logic meets graphs and algorithms 2/ 15



Logic on graphs

Michat Pilipczuk Logic meets graphs and algorithms 3/ 15



Logic on graphs

CLIQUE, = Ix;3x...3xk /\i# [(xi # x;) A adj(x;, x;)]

Michat Pilipczuk Logic meets graphs and algorithms 3/ 15



Logic on graphs

CLIQUE, = Ix;3x...3xk /\i# [(xi # x;) A adj(x;, x;)]

First-Order logic (FO):

— variables for single vertices, can check adjacency

Michat Pilipczuk Logic meets graphs and algorithms 3/ 15



Logic on graphs

CLIQUE, = Ix;3x...3xk /\i# [(xi # x;) A adj(x;, x;)]

First-Order logic (FO):

— variables for single vertices, can check adjacency

3-CoLorING = JAIBIC (A, B, C) is a partition of V and

every two adjacent vertices are colored differently

Michat Pilipczuk Logic meets graphs and algorithms 3/ 15



Logic on graphs

CLIQUE, = Ix;3x...3xk /\i# [(xi # x;) A adj(x;, x;)]

First-Order logic (FO):

— variables for single vertices, can check adjacency

3-CoLorING = JAIBIC (A, B, C) is a partition of V and

every two adjacent vertices are colored differently

Monadic Second-Order logic, first variant (MSO,):

— variables for single vertices and sets of vertices, can check membership

Michat Pilipczuk Logic meets graphs and algorithms 3/ 15



Logic on graphs

CLIQUE, = Ix;3x...3xk /\i# [(xi # x;) A adj(x;, x;)]

First-Order logic (FO):

— variables for single vertices, can check adjacency

3-CoLorING = JAIBIC (A, B, C) is a partition of V and

every two adjacent vertices are colored differently

Monadic Second-Order logic, first variant (MSO,):

— variables for single vertices and sets of vertices, can check membership

HamiLToNIcITY = IS C E  Sis connected and

every vertex is incident to exactly two edges of S

Michat Pilipczuk Logic meets graphs and algorithms 3/ 15



Logic on graphs

CLIQUE, = Ix;3x...3xk /\i# [(xi # x;) A adj(x;, x;)]

First-Order logic (FO):

— variables for single vertices, can check adjacency

3-CoLorING = JAIBIC (A, B, C) is a partition of V and

every two adjacent vertices are colored differently

Monadic Second-Order logic, first variant (MSO,):

— variables for single vertices and sets of vertices, can check membership

HamiLToNIcITY = IS C E  Sis connected and

every vertex is incident to exactly two edges of S

Monadic Second-Order logic, second variant (MSO,):

— vars for (sets of) vertices & edges, can check membership & incidence

Michat Pilipczuk Logic meets graphs and algorithms 3/ 15



MSO; on graphs: complexity

Michat Pilipczuk Logic meets graphs and algorithms 4/ 15



MSO, on graphs: complexity

HamiLToNiCITY is NP-complete ~~ MC MSO, intractable on general graphs

Michat Pilipczuk Logic meets graphs and algorithms 4/ 15



MSO, on graphs: complexity
HamiLToNiCITY is NP-complete ~~ MC MSO, intractable on general graphs

Obs: Every MSO,-definable problem can be decided in time O(n)

on colored paths.

—0—10C—"™0 0 O0—C—=0

Michat Pilipczuk Logic meets graphs and algorithms 4/ 15



MSO, on graphs: complexity
HamiLToNiCITY is NP-complete ~~ MC MSO, intractable on general graphs

Obs: Every MSO,-definable problem can be decided in time O(n)

on colored paths.

That is, model-checking MSO; in time f(y) - n.

—0—10C—"™0 0 O0—C—=0

Michat Pilipczuk Logic meets graphs and algorithms 4/ 15



MSO, on graphs: complexity
HamiLToNiCITY is NP-complete ~~ MC MSO, intractable on general graphs

Obs: Every MSO,-definable problem can be decided in time O(n)

on colored paths.
That is, model-checking MSO; in time f(y) - n.

Sketch:

—0—10C—"™0 0 O0—C—=0

Michat Pilipczuk Logic meets graphs and algorithms 4/ 15



MSO, on graphs: complexity
HamiLToNiCITY is NP-complete ~~ MC MSO, intractable on general graphs

Obs: Every MSO,-definable problem can be decided in time O(n)

on colored paths.
That is, model-checking MSO; in time f(y) - n.

Sketch:
— Colored path ~~ Word w € ¥*.

—0—10C—"™0 0 O0—C—=0
b b b

a a a

Michat Pilipczuk Logic meets graphs and algorithms 4/ 15



MSO, on graphs: complexity
HamiLToNiCITY is NP-complete ~~ MC MSO, intractable on general graphs

Obs: Every MSO,-definable problem can be decided in time O(n)

on colored paths.
That is, model-checking MSO; in time f(y) - n.

Sketch:
— Colored path ~~ Word w € ¥*.

— Sentence ¢ defining the problem ~» Finite automaton A

—0—10C—"™0 0 O0—C—=0
b b

a b a a

Michat Pilipczuk Logic meets graphs and algorithms 4/ 15



MSO, on graphs: complexity
HamiLToNiCITY is NP-complete ~~ MC MSO, intractable on general graphs

Obs: Every MSO,-definable problem can be decided in time O(n)

on colored paths.
That is, model-checking MSO; in time f(y) - n.

Sketch:
— Colored path ~~ Word w € ¥*.
— Sentence ¢ defining the problem ~» Finite automaton A

— Just run A on w in linear time.
90 & 0@ 0 O—C—=90
a b b b a a

Michat Pilipczuk Logic meets graphs and algorithms 4/ 15



Treewidth

Michat Pilipczuk Logic meets graphs and algorithms 5/ 15



Treewidth

The same idea will work on colored trees.

Michat Pilipczuk Logic meets graphs and algorithms 5/ 15



Treewidth

The same idea will work on colored trees. (MSO on trees = tree automata)

Michat Pilipczuk Logic meets graphs and algorithms 5/ 15



Treewidth

The same idea will work on colored trees. (MSO on trees = tree automata)

Q: How far can we go?

Michat Pilipczuk Logic meets graphs and algorithms 5/ 15



Treewidth

The same idea will work on colored trees. (MSO on trees = tree automata)

Q: How far can we go?

Definition (Treewidth)
A graph has treewidth k if it can be confined

to a tree of bags, each of size < k.

Michat Pilipczuk Logic meets graphs and algorithms 5/ 15



Treewidth

The same idea will work on colored trees. (MSO on trees = tree automata)

Q: How far can we go?

Definition (Treewidth)
A graph has treewidth k if it can be confined

to a tree of bags, each of size < k.

Theorem (Courcelle)
For every fixed k, every MSO,-definable problem can be decided

in linear time on graphs of treewidth < k.

Michat Pilipczuk Logic meets graphs and algorithms 5/ 15



Grid minors

Michat Pilipczuk Logic meets graphs and algorithms 6/ 15



Grid minors

Is this it? Can we go beyond bounded treewidth?

Michat Pilipczuk Logic meets graphs and algorithms 6/ 15



Grid minors

Is this it? Can we go beyond bounded treewidth?
Q: How do graphs of large treewidth look like?

Michat Pilipczuk Logic meets graphs and algorithms 6/ 15



Grid minors

Is this it? Can we go beyond bounded treewidth?
Q: How do graphs of large treewidth look like?

Theorem (Excluded Grid Minor)
There is a function f: N — N such that if the treewidth of G
is larger than f(k), then G contains a k x k grid minor.

Michat Pilipczuk Logic meets graphs and algorithms

6/ 15



Complexity of MSO, model-checking

Michat Pilipczuk Logic meets graphs and algorithms 7/ 15



Complexity of MSO, model-checking

Consider a class of graphs €.

Michat Pilipczuk Logic meets graphs and algorithms 7/ 15



Complexity of MSO, model-checking

Consider a class of graphs €.

% has bnd treewidth =

Every MSO,-definable problem solvable in linear time

Michat Pilipczuk Logic meets graphs and algorithms 7/ 15



Complexity of MSO, model-checking

Consider a class of graphs €.

% has bnd treewidth =

Every MSO,-definable problem solvable in linear time

% has unbnd treewidth =

¢ contains arbitrarily large grid minors

Michat Pilipczuk Logic meets graphs and algorithms 7/ 15



Complexity of MSO, model-checking

Consider a class of graphs €.

% has bnd treewidth =

Every MSO,-definable problem solvable in linear time

% has unbnd treewidth =
% contains arbitrarily large grid minors ="
Model-checking MSO,; on colored graphs from &

is as hard as on general graphs.

Michat Pilipczuk Logic meets graphs and algorithms 7/ 15



Complexity of MSO, model-checking

Consider a class of graphs €.

% has bnd treewidth =

Every MSO,-definable problem solvable in linear time

% has unbnd treewidth =
% contains arbitrarily large grid minors ="
Model-checking MSO, on colored graphs from &

is as hard as on general graphs.

Reason: Encode an arbitrary

adjacency matrix in a grid minor.

Michat Pilipczuk Logic meets graphs and algorithms 7/ 15



Dichotomy

Michat Pilipczuk Logic meets graphs and algorithms 8/ 15



Dichotomy
Consider a graph class €. Then either:

Michat Pilipczuk Logic meets graphs and algorithms 8/ 15



Dichotomy
Consider a graph class €. Then either:

¢ has bounded treewidth. ¢ has arbitrarily large grid minors.

MSO, model-checking on colored & MSO, model-checking on colored &

in time f(p) - n. . as hard as on general graphs.
In colored & one can MSO,-interpret In colored € one can MSO,-interpret
only tree-like graphs. all graphs.

Michat Pilipczuk Logic meets graphs and algorithms 8/ 15



Dichotomy

Consider a graph class €. Then either:

graph theory

% has bounded treewidth.

MSO, model-checking on colored &
in time f(p) - n.

In colored & one can MSO,-interpret

only tree-like graphs.

Michat Pilipczuk

¢ has arbitrarily large grid minors.

MSO, model-checking on colored &

as hard as on general graphs.

In colored € one can MSO,-interpret

all graphs.

Logic meets graphs and algorithms 8/ 15



Dichotomy
Consider a graph class €. Then either:

graph theory

¢ has bounded treewidth. ¢ has arbitrarily large grid minors.

algorithms

MSO, model-checking on colored & MSO, model-checking on colored &

in time f(p) - n. . as hard as on general graphs.
In colored & one can MSO,-interpret In colored € one can MSO,-interpret
only tree-like graphs. all graphs.

Michat Pilipczuk Logic meets graphs and algorithms 8/ 15



Dichotomy
Consider a graph class €. Then either:

graph theory
¢ has bounded treewidth. ¢ has arbitrarily large grid minors.

algorithms
MSO, model-checking on colored & MSO, model-checking on colored &

in time f(p) - n. . as hard as on general graphs.
finite model theory

In colored & one can MSO,-interpret In colored € one can MSO,-interpret

only tree-like graphs. all graphs.

Michat Pilipczuk Logic meets graphs and algorithms 8/ 15



Other logic

Michat Pilipczuk Logic meets graphs and algorithms 9/ 15



Other logic

-------------------------------------- > bnd treewidth

Michat Pilipczuk Logic meets graphs and algorithms

9/ 15



Other logic

MSOjy  ¢-mmmmmmmmrm e > bnd treewidth
U N
MSO;  ¢mmmmmmmmmmm e » bnd cliquewidth

Michat Pilipczuk Logic meets graphs and algorithms

9/ 15



Other logic

MSQO;  ¢--mmmmmmrr e > bnd treewidth
U M

MSO;  ¢mmmmmmmmmmm e » bnd cliquewidth
U
FO ?7?

Michat Pilipczuk Logic meets graphs and algorithms

9/ 15



Other logic

MSO;  ¢mmmmmmmm e > bnd treewidth
U M

MSO;  ¢mmmmmmmmmmm e » bnd cliquewidth
U
FO e R R » nowhere dense ?7?

Michat Pilipczuk Logic meets graphs and algorithms

9/ 15



Nowhere denseness

Michat Pilipczuk Logic meets graphs and algorithms 10 / 15



Nowhere denseness
Definition (Nowhere denseness)
A class of graphs % is nowhere dense if for every d € N there is t(d)
such that graphs from %" exclude the d-subdivision of the clique Kj4).

Michat Pilipczuk Logic meets graphs and algorithms 10 / 15



Nowhere denseness
Definition (Nowhere denseness)
A class of graphs % is nowhere dense if for every d € N there is t(d)
such that graphs from %" exclude the d-subdivision of the clique Kj4).

Examples:
— planar graphs;
— graphs with a fixed excluded minor;
— graphs with maximum degree < 15;

— graphs of treewidth < 15.

Michat Pilipczuk Logic meets graphs and algorithms 10 / 15



Nowhere denseness
Definition (Nowhere denseness)
A class of graphs € is nowhere dense if for every d € N there is t(d)
such that graphs from %" exclude the d-subdivision of the clique Kj4).

Examples:
— planar graphs;
— graphs with a fixed excluded minor;
— graphs with maximum degree < 15;

— graphs of treewidth < 15.

Theorem (Grohe, Kreutzer, Siebertz)
Suppose % is a class of graphs closed under taking subgraphs. Then:
— % nowhere dense = MC FO in time f(y) - n'*¢ for any ¢ > 0.
— ¢ somewhere dense = MC FO as hard as on general graphs.

Michat Pilipczuk Logic meets graphs and algorithms 10 / 15



Nowhere denseness
Definition (Nowhere denseness)
A class of graphs € is nowhere dense if for every d € N there is t(d)
such that graphs from %" exclude the d-subdivision of the clique Kj4).

Examples:
— planar graphs;
— graphs with a fixed excluded minor;
— graphs with maximum degree < 15;

— graphs of treewidth < 15.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose % is a class of graphs closed under taking subgraphs. Then:

— % nowhere dense = MC FO in time f(y) - n'*¢ for any ¢ > 0.
— ¢ somewhere dense = MC FO as hard as on general graphs.

Michat Pilipczuk Logic meets graphs and algorithms 10 / 15



Towards a characterization for FO

Michat Pilipczuk Logic meets graphs and algorithms 11/ 15



Towards a characterization for FO

The theorem of GKS originates from the theory of Sparsity.

Michat Pilipczuk Logic meets graphs and algorithms 11/ 15



Towards a characterization for FO

The theorem of GKS originates from the theory of Sparsity.

— A wealth of graph-theoretic tools for nowhere dense classes.

Michat Pilipczuk Logic meets graphs and algorithms 11/ 15



Towards a characterization for FO

The theorem of GKS originates from the theory of Sparsity.

— A wealth of graph-theoretic tools for nowhere dense classes.

There are classes of dense graphs where FO model-checking is tractable.

Michat Pilipczuk Logic meets graphs and algorithms 11/ 15



Towards a characterization for FO

The theorem of GKS originates from the theory of Sparsity.

— A wealth of graph-theoretic tools for nowhere dense classes.

There are classes of dense graphs where FO model-checking is tractable.

— cliques;

Michat Pilipczuk Logic meets graphs and algorithms 11/ 15



Towards a characterization for FO

The theorem of GKS originates from the theory of Sparsity.

— A wealth of graph-theoretic tools for nowhere dense classes.

There are classes of dense graphs where FO model-checking is tractable.
— cliques;

— for any nowhere dense %, edge-complements of €,

Michat Pilipczuk Logic meets graphs and algorithms 11/ 15



Towards a characterization for FO

The theorem of GKS originates from the theory of Sparsity.

— A wealth of graph-theoretic tools for nowhere dense classes.

There are classes of dense graphs where FO model-checking is tractable.
— cliques;
— for any nowhere dense %, edge-complements of €,

— any class of bounded cliquewidth.

Michat Pilipczuk Logic meets graphs and algorithms 11/ 15



Towards a characterization for FO

The theorem of GKS originates from the theory of Sparsity.

— A wealth of graph-theoretic tools for nowhere dense classes.

There are classes of dense graphs where FO model-checking is tractable.
— cliques;
— for any nowhere dense %, edge-complements of €,

— any class of bounded cliquewidth.

Q: Proposition for ?? in the following;:

Michat Pilipczuk Logic meets graphs and algorithms 11/ 15



Towards a characterization for FO

The theorem of GKS originates from the theory of Sparsity.

— A wealth of graph-theoretic tools for nowhere dense classes.

There are classes of dense graphs where FO model-checking is tractable.
— cliques;
— for any nowhere dense %, edge-complements of €,

— any class of bounded cliquewidth.

Q: Proposition for ?? in the following;:

Definition (Monadic dependence)
A class of graphs % is monadically dependent if one cannot

FO-interpret all graphs in colored graphs from .

Michat Pilipczuk Logic meets graphs and algorithms 11/ 15



Monadic dependence

Michat Pilipczuk Logic meets graphs and algorithms 12/ 15



Monadic dependence

(Monadically) dependent (NIP) and (monadically) stable theories

are a central object of studies in model theory.

Michat Pilipczuk Logic meets graphs and algorithms 12/ 15



Monadic dependence

(Monadically) dependent (NIP) and (monadically) stable theories
are a central object of studies in model theory.

— There is a toolbox...

Michat Pilipczuk Logic meets graphs and algorithms 12/ 15



Monadic dependence

(Monadically) dependent (NIP) and (monadically) stable theories
are a central object of studies in model theory.

— There is a toolbox... but applies to an inherently infinite setting.

Michat Pilipczuk Logic meets graphs and algorithms 12/ 15



Monadic dependence

(Monadically) dependent (NIP) and (monadically) stable theories
are a central object of studies in model theory.
— There is a toolbox... but applies to an inherently infinite setting.

— For example, nowhere dense = superflat.

Michat Pilipczuk Logic meets graphs and algorithms 12/ 15



Monadic dependence

(Monadically) dependent (NIP) and (monadically) stable theories
are a central object of studies in model theory.
— There is a toolbox... but applies to an inherently infinite setting.

— For example, nowhere dense = superflat.

Goal: Understand it and apply the toolbox to classes of finite graphs.

Michat Pilipczuk Logic meets graphs and algorithms 12/ 15



Monadic dependence

(Monadically) dependent (NIP) and (monadically) stable theories
are a central object of studies in model theory.
— There is a toolbox... but applies to an inherently infinite setting.

— For example, nowhere dense = superflat.

Goal: Understand it and apply the toolbox to classes of finite graphs.

I HAVE NO
IDER WHAT
I'MDOING

Michat Pilipczuk Logic meets graphs and algorithms 12/ 15



Intermediate logic

MSO;  ¢--mmmmmmm e > bnd treewidth
U M

MSO;  ¢mmmmmmmmmmm e » bnd cliquewidth
U
FO  ¢--------m-m--- » nowhere dense

Michat Pilipczuk Logic meets graphs and algorithms

13/ 15



Intermediate logic

Can we find natural variants of logic between FO and MSO?

MSO; ¢ > bnd treewidth
U M

MSO;  ¢mmmmmmmmmmm e » bnd cliquewidth
U
FO  ¢--------m-m--- » nowhere dense

Michat Pilipczuk Logic meets graphs and algorithms

13/ 15



Intermediate logic

Can we find natural variants of logic between FO and MSO?

MSOjy  ¢-mmmmmmmmrm e > bnd treewidth
U N
MSO; ¢ > bnd cliquewidth
U
FO + conn  ¢----------- > top-minor-free
U M
FO  «-------omom--- » nowhere dense

Proposition: logic FO + conn corresponds to topological-minor-free classes.

Michat Pilipczuk Logic meets graphs and algorithms 13/ 15



FO + conn

Michat Pilipczuk Logic meets graphs and algorithms 14/ 15



FO + conn

Def: G = conn(s, t, uy, . . ., uy)

if s and t can be connected by a path avoiding uy, .. ., u.

@X
Uzo
Ous
S t
U4O
Ous

Michat Pilipczuk

Logic meets graphs and algorithms

14/ 15



FO + conn

Def: G = conn(s, t, uy, . . ., uy)

if s and t can be connected by a path avoiding uy, .. ., u.

FO + conn is FO where you can also use conn predicates.

@X
Uzo
Ous
S t
U4O
Ous

Michat Pilipczuk

Logic meets graphs and algorithms

14/ 15



FO + conn

Def: G = conn(s, t, uy, . . ., uy)

if s and t can be connected by a path avoiding uy, .. ., u.

FO + conn is FO where you can also use conn predicates.

See [Bojanczyk; 217] and [Schirrmacher, Siebertz, Vigny; this CSL!].

@X
Uzo
Ous
S t
U4O
Ous

Michat Pilipczuk

Logic meets graphs and algorithms

14/ 15



FO + conn
Def: G = conn(s, t, uy, . . ., uy)

if s and t can be connected by a path avoiding uy, .. ., u.

FO + conn is FO where you can also use conn predicates.

See [Bojanczyk; 217] and [Schirrmacher, Siebertz, Vigny; this CSL!].

Def: ¢ is top-minor-free if there is t € N such that
no graph G € € contains a subdivision of K;.

@X
Uzo
Ous
S t
U4O
Ous

Michat Pilipczuk Logic meets graphs and algorithms 14/ 15



FO + conn
Def: G = conn(s, t, uy, . . ., uy)

if s and t can be connected by a path avoiding uy, .. ., u.

FO + conn is FO where you can also use conn predicates.

See [Bojanczyk; 217] and [Schirrmacher, Siebertz, Vigny; this CSL!].

Def: ¢ is top-minor-free if there is t € N such that
no graph G € € contains a subdivision of K;.

Theorem (P, Schirrmacher, Siebertz, Torufczyk, Vigny; 217)
Suppose % is a class of graphs closed under taking subgraphs. Then:
— % top-minor-free = MC FO + conn in time f(p) - n.
— % not top-minor-free =* MC FO + conn hard as on general graphs.

Michat Pilipczuk Logic meets graphs and algorithms 14/ 15



FO + conn
Def: G = conn(s, t, uy, . . ., uy)

if s and t can be connected by a path avoiding uy, .. ., u.

FO + conn is FO where you can also use conn predicates.

See [Bojanczyk; 217] and [Schirrmacher, Siebertz, Vigny; this CSL!].

Def: ¢ is top-minor-free if there is t € N such that
no graph G € € contains a subdivision of K;.

Theorem (P, Schirrmacher, Siebertz, Torufczyk, Vigny; 217)
Suppose % is a class of graphs closed under taking subgraphs. Then:
— % top-minor-free = MC FO + conn in time f(p) - n.
— % not top-minor-free =* MC FO + conn hard as on general graphs.

Key: A known decomposition into parts where FO + conn reduces to FO.

Michat Pilipczuk Logic meets graphs and algorithms 14/ 15



Wrap-up

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up

Start: questions originating from graph algorithms.

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up
Start: questions originating from graph algorithms.

We formulated them in logic. ~»  Complexity of model-checking.

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up

Start: questions originating from graph algorithms.

We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.

Michat Pilipczuk Logic meets graphs and algorithms

15/ 15



Wrap-up
Start: questions originating from graph algorithms.
We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.

For FO, a logic-motivated branch of graph theory: Sparsity.

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up

Start: questions originating from graph algorithms.

We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.

For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.

Michat Pilipczuk Logic meets graphs and algorithms

15/ 15



Wrap-up
Start: questions originating from graph algorithms.
We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.

A fundamental puzzle with many facets.

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up
Start: questions originating from graph algorithms.
We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.
A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets.

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up
Start: questions originating from graph algorithms.
We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.
A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets.

Mathematics is not only about depth, but also about connections.

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up
Start: questions originating from graph algorithms.
We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.
A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets.
Mathematics is not only about depth, but also about connections.

— Don’t be afraid to try multiple new areas.

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up
Start: questions originating from graph algorithms.
We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.
A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets.
Mathematics is not only about depth, but also about connections.
— Don’t be afraid to try multiple new areas.

— Learning by trying.

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up
Start: questions originating from graph algorithms.
We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.
A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets.
Mathematics is not only about depth, but also about connections.
— Don’t be afraid to try multiple new areas.
— Learning by trying.

Thanks for attention!

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



