Logic meets graph theory and algorithm design

Michał Pilipczuk

University of Warsaw

Logic Mentoring Workshop @ CSL 2022 February 14th, 2022

Area of **graph algorithms**:

Area of graph algorithms:

- I: A graph G and some parameters \bar{k} .

Area of graph algorithms:

- I: A graph G and some parameters \bar{k} .
- **Q**: Decide the existence of some object based on *G* and \bar{k} .

Area of graph algorithms:

- I: A graph G and some parameters \bar{k} .
- **Q**: Decide the existence of some object based on *G* and \bar{k} .

Examples:

Area of graph algorithms:

- I: A graph G and some parameters \bar{k} .
- **Q**: Decide the existence of some object based on *G* and \bar{k} .

Examples:

- CLIQUE: Does G have k pairwise adjacent vertices?

Area of graph algorithms:

- I: A graph G and some parameters \bar{k} .
- **Q**: Decide the existence of some object based on *G* and \bar{k} .

Examples:

- CLIQUE: Does G have k pairwise adjacent vertices?
- 3-Coloring: Does G have a proper coloring using 3 colors?

Area of graph algorithms:

- I: A graph G and some parameters \bar{k} .
- **Q**: Decide the existence of some object based on *G* and \bar{k} .

Examples:

- CLIQUE: Does G have k pairwise adjacent vertices?
- 3-Coloring: Does G have a proper coloring using 3 colors?
- Намістолісіту: Does *G* have a cycle visiting every vertex once?

Typical: Take a problem *P*, solve it efficiently on some class \mathscr{C} of graphs.

Typical: Take a problem *P*, solve it efficiently on some class \mathscr{C} of graphs. - Often **highly non-trivial** and **problem-dependent**.

Typical: Take a problem *P*, solve it efficiently on some class \mathscr{C} of graphs.

- Often highly non-trivial and problem-dependent.
- Common denominators: techniques that work for certain problems.

Typical: Take a problem *P*, solve it efficiently on some class \mathscr{C} of graphs.

- Often highly non-trivial and problem-dependent.
- Common denominators: techniques that work for certain problems.

Idea: Look at classes of problems.

Typical: Take a problem *P*, solve it efficiently on some class \mathscr{C} of graphs.

- Often highly non-trivial and problem-dependent.
- Common denominators: techniques that work for certain problems.

Idea: Look at classes of problems.

- For instance, all problems expressible in a logic \mathcal{L} .

Typical: Take a problem *P*, solve it efficiently on some class \mathscr{C} of graphs.

- Often highly non-trivial and problem-dependent.
- Common denominators: techniques that work for certain problems.

Idea: Look at classes of problems.

- For instance, all problems expressible in a logic \mathcal{L} .

Theorem (Meta-theorem template)

Every problem expressible in \mathcal{L} can be solved in time *Blah* on every graph from \mathscr{C} .

Typical: Take a problem *P*, solve it efficiently on some class \mathscr{C} of graphs.

- Often highly non-trivial and problem-dependent.
- Common denominators: techniques that work for certain problems.

Idea: Look at classes of problems.

- For instance, all problems expressible in a logic \mathcal{L} .

Theorem (Meta-theorem template)

Every problem expressible in \mathcal{L} can be solved in time *Blah* on every graph from \mathscr{C} .

Explains the range of applicability of certain techniques.

Typical: Take a problem *P*, solve it efficiently on some class \mathscr{C} of graphs.

- Often highly non-trivial and problem-dependent.
- Common denominators: techniques that work for certain problems.

Idea: Look at classes of problems.

- For instance, all problems expressible in a logic \mathcal{L} .

Theorem (Meta-theorem template)

Every problem expressible in \mathcal{L} can be solved in time *Blah* on every graph from \mathscr{C} .

Explains the range of applicability of certain techniques.

Model-checking \mathcal{L} **on** \mathscr{C} : Given $\varphi \in \mathcal{L}$ and $G \in \mathscr{C}$, decide $G \models \varphi$.

$$CLIQUE_k = \exists x_1 \exists x_2 \ldots \exists x_k \bigwedge_{i \neq j} [(x_i \neq x_j) \land adj(x_i, x_j)]$$

$$CLIQUE_k = \exists x_1 \exists x_2 \ldots \exists x_k \bigwedge_{i \neq j} [(x_i \neq x_j) \land adj(x_i, x_j)]$$

First-Order logic (FO):

- variables for single vertices, can check adjacency

 $CLIQUE_k = \exists x_1 \exists x_2 \ldots \exists x_k \bigwedge_{i \neq j} [(x_i \neq x_j) \land adj(x_i, x_j)]$

First-Order logic (FO):

- variables for single vertices, can check adjacency

3-COLORING = $\exists A \exists B \exists C$ (*A*, *B*, *C*) is a partition of *V* and every two adjacent vertices are colored differently

 $CLIQUE_k = \exists x_1 \exists x_2 \ldots \exists x_k \bigwedge_{i \neq j} [(x_i \neq x_j) \land adj(x_i, x_j)]$

First-Order logic (FO):

- variables for single vertices, can check adjacency

3-COLORING = $\exists A \exists B \exists C$ (*A*, *B*, *C*) is a partition of *V* and every two adjacent vertices are colored differently

Monadic Second-Order logic, first variant (MSO₁):

- variables for single vertices and sets of vertices, can check membership

 $CLIQUE_k = \exists x_1 \exists x_2 \ldots \exists x_k \bigwedge_{i \neq j} [(x_i \neq x_j) \land adj(x_i, x_j)]$

First-Order logic (FO):

- variables for single vertices, can check adjacency

3-COLORING = $\exists A \exists B \exists C$ (*A*, *B*, *C*) is a partition of *V* and every two adjacent vertices are colored differently

Monadic Second-Order logic, first variant (MSO₁):

- variables for single vertices and sets of vertices, can check membership

HAMILTONICITY $= \exists S \subseteq E \quad S$ is connected and

every vertex is incident to exactly two edges of S

 $CLIQUE_k = \exists x_1 \exists x_2 \ldots \exists x_k \bigwedge_{i \neq j} [(x_i \neq x_j) \land adj(x_i, x_j)]$

First-Order logic (FO):

- variables for single vertices, can check adjacency

3-COLORING = $\exists A \exists B \exists C$ (*A*, *B*, *C*) is a partition of *V* and every two adjacent vertices are colored differently

Monadic Second-Order logic, first variant (MSO₁):

- variables for single vertices and sets of vertices, can check membership

HAMILTONICITY $= \exists S \subseteq E \quad S$ is connected and

every vertex is incident to exactly two edges of *S*

Monadic Second-Order logic, second variant (MSO₂**)**:

- vars for (sets of) vertices & edges, can check membership & incidence

HAMILTONICITY is NP-complete \rightsquigarrow MC MSO₂ intractable on general graphs

HAMILTONICITY is NP-complete ~> MC MSO₂ intractable on general graphs

Obs: Every MSO₂-definable problem can be decided in time $\mathcal{O}(n)$ on **colored paths**.

HAMILTONICITY is NP-complete \rightsquigarrow MC MSO₂ intractable on general graphs

Obs: Every MSO₂-definable problem can be decided in time $\mathcal{O}(n)$ on **colored paths**.

That is, model-checking MSO₂ in time $f(\varphi) \cdot n$.

HAMILTONICITY is NP-complete \rightsquigarrow MC MSO₂ intractable on general graphs

Obs: Every MSO₂-definable problem can be decided in time $\mathcal{O}(n)$ on **colored paths**.

That is, model-checking MSO₂ in time $f(\varphi) \cdot n$.

Sketch:

HAMILTONICITY is NP-complete ~> MC MSO₂ intractable on general graphs

Obs: Every MSO₂-definable problem can be decided in time $\mathcal{O}(n)$ on **colored paths**.

That is, model-checking MSO₂ in time $f(\varphi) \cdot n$.

Sketch:

- Colored path \rightsquigarrow Word $w \in \Sigma^{\star}$.

HAMILTONICITY is NP-complete \rightsquigarrow MC MSO₂ intractable on general graphs

Obs: Every MSO₂-definable problem can be decided in time $\mathcal{O}(n)$ on **colored paths**.

That is, model-checking MSO₂ in time $f(\varphi) \cdot n$.

Sketch:

- Colored path \rightsquigarrow Word $w \in \Sigma^{\star}$.
- Sentence φ defining the problem \rightsquigarrow Finite automaton $\mathcal A$

HAMILTONICITY is NP-complete \rightsquigarrow MC MSO₂ intractable on general graphs

Obs: Every MSO₂-definable problem can be decided in time $\mathcal{O}(n)$ on **colored paths**.

That is, model-checking MSO₂ in time $f(\varphi) \cdot n$.

Sketch:

- Colored path \rightsquigarrow Word $w \in \Sigma^{\star}$.
- Sentence φ defining the problem \rightsquigarrow Finite automaton $\mathcal A$
- Just run \mathcal{A} on w in linear time.

Treewidth

Treewidth

The same idea will work on **colored trees**.

Treewidth

The same idea will work on **colored trees**. (MSO on trees = tree automata)
Treewidth

The same idea will work on **colored trees**. (MSO on trees = tree automata) **Q**: How far can we go?

Treewidth

The same idea will work on **colored trees**. (MSO on trees = tree automata) **Q**: How far can we go?

Definition (Treewidth)

A graph has **treewidth** k if it can be confined to a tree of **bags**, each of size $\leq k$.

Treewidth

The same idea will work on **colored trees**. (MSO on trees = tree automata) **Q**: How far can we go?

Definition (Treewidth)

A graph has **treewidth** *k* if it can be confined

to a tree of **bags**, each of size $\leq k$.

Theorem (Courcelle)

For every fixed *k*, every MSO₂-definable problem can be decided in linear time on graphs of treewidth $\leq k$.

Is this it? Can we go beyond bounded treewidth?

Is this it? Can we go beyond bounded treewidth?Q: How do graphs of large treewidth look like?

Is this it? Can we go beyond bounded treewidth?

Q: How do graphs of large treewidth look like?

Theorem (Excluded Grid Minor)

There is a function $f : \mathbb{N} \to \mathbb{N}$ such that if the treewidth of *G* is larger than f(k), then *G* contains a $k \times k$ grid minor.

Consider a class of graphs \mathscr{C} .

Consider a class of graphs \mathscr{C} .

 ${\mathscr C}$ has **bnd treewidth** \Rightarrow

Every MSO₂-definable problem solvable in linear time

Consider a class of graphs \mathscr{C} .

 ${\mathscr C}$ has **bnd treewidth** \Rightarrow

Every MSO₂-definable problem solvable in linear time

 ${\mathscr C}$ has **unbnd treewidth** \Rightarrow

 ${\mathscr C}$ contains arbitrarily large grid minors

Consider a class of graphs \mathscr{C} .

 ${\mathscr C}$ has **bnd treewidth** \Rightarrow

Every MSO₂-definable problem solvable in linear time

 ${\mathscr C}$ has **unbnd treewidth** \Rightarrow

 \mathscr{C} contains arbitrarily large grid minors \Rightarrow^* Model-checking MSO₂ on colored graphs from \mathscr{C} is as **hard** as on general graphs.

Consider a class of graphs \mathscr{C} .

 ${\mathscr C}$ has **bnd treewidth** \Rightarrow

Every MSO₂-definable problem solvable in linear time

 ${\mathscr C}$ has **unbnd treewidth** \Rightarrow

 \mathscr{C} contains arbitrarily large grid minors \Rightarrow^* Model-checking MSO₂ on colored graphs from \mathscr{C} is as **hard** as on general graphs.

Reason: Encode an arbitrary

adjacency matrix in a grid minor.

Consider a graph class \mathscr{C} . Then either:

C has **bounded treewidth**.

MSO₂ model-checking on colored \mathscr{C} in **time** $f(\varphi) \cdot n$.

In colored \mathscr{C} one can MSO_2 -interpret only tree-like graphs. C has arbitrarily large grid minors.

 MSO_2 model-checking on colored \mathscr{C} as **hard** as on general graphs.

In colored \mathscr{C} one can MSO_2 -interpret all graphs.

	graph theory		
C has bounded treewidth	1 .	\mathscr{C} has ar	bitrarily <mark>large grid minors</mark> .
MSO ₂ model-checking on contain time $f(\varphi) \cdot n$.	olored <i>C</i>	MSO ₂ mo as <mark>hard</mark> a	odel-checking on colored <i>C</i> as on general graphs.
In colored \mathscr{C} one can MSO_2 only tree-like graphs.	-interpret	In colored <mark>all grap</mark> ł	d & one can MSO ₂ -interpret 1s.

Definition (Nowhere denseness)

A class of graphs \mathscr{C} is **nowhere dense** if for every $d \in \mathbb{N}$ there is t(d)

such that graphs from \mathscr{C} exclude the *d*-subdivision of the clique $K_{t(d)}$.

Definition (Nowhere denseness)

A class of graphs \mathscr{C} is **nowhere dense** if for every $d \in \mathbb{N}$ there is t(d) such that graphs from \mathscr{C} **exclude** the *d*-subdivision of the clique $K_{t(d)}$.

Examples:

- planar graphs;
- graphs with a fixed excluded minor;
- graphs with maximum degree \leq 15;
- graphs of treewidth \leqslant 15.

Definition (Nowhere denseness)

A class of graphs \mathscr{C} is **nowhere dense** if for every $d \in \mathbb{N}$ there is t(d) such that graphs from \mathscr{C} **exclude** the *d*-subdivision of the clique $K_{t(d)}$.

Examples:

- planar graphs;
- graphs with a fixed excluded minor;
- graphs with maximum degree \leq 15;
- graphs of treewidth \leqslant 15.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose $\mathscr C$ is a class of graphs closed under taking subgraphs. Then:

- $-\mathscr{C}$ nowhere dense \Rightarrow MC FO in time $f(\varphi) \cdot n^{1+\varepsilon}$ for any $\varepsilon > 0$.
- \mathscr{C} somewhere dense \Rightarrow MC FO as hard as on general graphs.

Definition (Nowhere denseness)

A class of graphs \mathscr{C} is **nowhere dense** if for every $d \in \mathbb{N}$ there is t(d) such that graphs from \mathscr{C} **exclude** the *d*-subdivision of the clique $K_{t(d)}$.

Examples:

- planar graphs;
- graphs with a fixed excluded minor;
- graphs with maximum degree \leq 15;
- graphs of treewidth \leqslant 15.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose $\mathscr C$ is a class of graphs closed under taking subgraphs. Then:

- \mathscr{C} nowhere dense \Rightarrow MC FO in time $f(\varphi) \cdot n^{1+\varepsilon}$ for any $\varepsilon > 0$.
- \mathscr{C} somewhere dense \Rightarrow MC FO as hard as on general graphs.

The theorem of GKS originates from the theory of **Sparsity**.

The theorem of GKS originates from the theory of **Sparsity**.

- A wealth of **graph-theoretic** tools for nowhere dense classes.

The theorem of GKS originates from the theory of **Sparsity**.

- A wealth of **graph-theoretic** tools for nowhere dense classes.

There are classes of **dense** graphs where FO model-checking is tractable.

The theorem of GKS originates from the theory of **Sparsity**.

- A wealth of **graph-theoretic** tools for nowhere dense classes.

There are classes of **dense** graphs where FO model-checking is tractable. - cliques;

The theorem of GKS originates from the theory of **Sparsity**.

- A wealth of **graph-theoretic** tools for nowhere dense classes.

There are classes of **dense** graphs where FO model-checking is tractable.

- cliques;
- for any nowhere dense \mathscr{C} , edge-complements of \mathscr{C} ;

The theorem of GKS originates from the theory of **Sparsity**.

- A wealth of **graph-theoretic** tools for nowhere dense classes.

There are classes of **dense** graphs where FO model-checking is tractable.

- cliques;
- for any nowhere dense \mathscr{C} , edge-complements of \mathscr{C} ;
- any class of bounded cliquewidth.
Towards a characterization for FO

The theorem of GKS originates from the theory of **Sparsity**.

- A wealth of **graph-theoretic** tools for nowhere dense classes.

There are classes of **dense** graphs where FO model-checking is tractable.

- cliques;
- for any nowhere dense \mathscr{C} , edge-complements of \mathscr{C} ;
- any class of bounded cliquewidth.

Q: Proposition for ?? in the following:

FO <-----> ??

Towards a characterization for FO

The theorem of GKS originates from the theory of **Sparsity**.

- A wealth of **graph-theoretic** tools for nowhere dense classes.

There are classes of **dense** graphs where FO model-checking is tractable.

- cliques;
- for any nowhere dense \mathscr{C} , edge-complements of \mathscr{C} ;
- any class of bounded cliquewidth.

Q: Proposition for ?? in the following:

FO <-----> ??

Definition (Monadic dependence)

A class of graphs \mathscr{C} is **monadically dependent** if one cannot FO-interpret all graphs in colored graphs from \mathscr{C} .

(Monadically) dependent (NIP) and (monadically) stable theories are a central object of studies in model theory.

(Monadically) dependent (NIP) and (monadically) stable theories

are a central object of studies in model theory.

- There is a toolbox...

(Monadically) dependent (NIP) and (monadically) stable theories are a central object of studies in model theory.

- There is a toolbox... but applies to an inherently infinite setting.

(Monadically) dependent (NIP) and (monadically) stable theories are a central object of studies in model theory.

- There is a toolbox... but applies to an inherently infinite setting.
- For example, **nowhere dense** = **superflat**.

(Monadically) dependent (NIP) and (monadically) stable theories are a central object of studies in model theory.

- There is a toolbox... but applies to an inherently infinite setting.
- For example, **nowhere dense** = **superflat**.

Goal: Understand it and apply the toolbox to classes of finite graphs.

(Monadically) dependent (NIP) and (monadically) stable theories are a central object of studies in model theory.

- There is a toolbox... but applies to an inherently infinite setting.
- For example, **nowhere dense** = **superflat**.

Goal: Understand it and apply the toolbox to classes of finite graphs.

So far...

Intermediate logic

Intermediate logic

Can we find natural variants of logic between FO and MSO?

Intermediate logic

Can we find natural variants of logic between FO and MSO?

Proposition: logic FO + conn corresponds to **topological-minor-free classes**.

13 / 15

$\mathrm{FO}+\mathrm{conn}$

Def:
$$G \models \operatorname{conn}(s, t, u_1, \ldots, u_k)$$

if *s* and *t* can be **connected** by a **path** avoiding u_1, \ldots, u_k .

$\mathrm{FO}+\mathrm{conn}$

Def:
$$G \models \operatorname{conn}(s, t, u_1, \ldots, u_k)$$

if *s* and *t* can be **connected** by a **path** avoiding u_1, \ldots, u_k .

FO + conn is FO where you can also use conn predicates.

Def:
$$G \models \operatorname{conn}(s, t, u_1, \ldots, u_k)$$

if *s* and *t* can be **connected** by a **path** avoiding u_1, \ldots, u_k .

FO + conn is FO where you can also use conn predicates.

See [Bojańczyk; 21⁺] and [Schirrmacher, Siebertz, Vigny; this CSL!].

Def:
$$G \models \operatorname{conn}(s, t, u_1, \ldots, u_k)$$

if *s* and *t* can be **connected** by a **path** avoiding u_1, \ldots, u_k .

FO + conn is FO where you can also use conn predicates.

See [Bojańczyk; 21⁺] and [Schirrmacher, Siebertz, Vigny; this CSL!].

Def: \mathscr{C} is **top-minor-free** if there is $t \in \mathbb{N}$ such that no graph $G \in \mathscr{C}$ contains a subdivision of K_t .

Def:
$$G \models \operatorname{conn}(s, t, u_1, \ldots, u_k)$$

if *s* and *t* can be **connected** by a **path** avoiding u_1, \ldots, u_k .

FO + conn is FO where you can also use conn predicates.

See [Bojańczyk; 21⁺] and [Schirrmacher, Siebertz, Vigny; this CSL!].

Def: \mathscr{C} is **top-minor-free** if there is $t \in \mathbb{N}$ such that no graph $G \in \mathscr{C}$ contains a subdivision of K_t .

Theorem (P, Schirrmacher, Siebertz, Toruńczyk, Vigny; 21⁺)

Suppose \mathscr{C} is a class of graphs closed under taking subgraphs. Then:

 $-\mathscr{C}$ top-minor-free \Rightarrow MC FO + conn in time $f(\varphi) \cdot n$.

 $- \mathscr{C}$ **not top-minor-free** $\Rightarrow^* MC FO + \text{conn hard as on general graphs.}$

Def:
$$G \models \operatorname{conn}(s, t, u_1, \ldots, u_k)$$

if *s* and *t* can be **connected** by a **path** avoiding u_1, \ldots, u_k .

FO + conn is FO where you can also use conn predicates.

See [Bojańczyk; 21⁺] and [Schirrmacher, Siebertz, Vigny; this CSL!].

Def: \mathscr{C} is **top-minor-free** if there is $t \in \mathbb{N}$ such that no graph $G \in \mathscr{C}$ contains a subdivision of K_t .

Theorem (P, Schirrmacher, Siebertz, Toruńczyk, Vigny; 21⁺)

Suppose $\mathscr C$ is a class of graphs closed under taking subgraphs. Then:

- $-\mathscr{C}$ top-minor-free \Rightarrow MC FO + conn in time $f(\varphi) \cdot n$.
- $-\mathscr{C}$ **not top-minor-free** $\Rightarrow^* MC FO + \text{conn hard as on general graphs.}$

Key: A known decomposition into parts where FO + conn reduces to FO.

Start: questions originating from **graph algorithms**.

Start: questions originating from **graph algorithms**.

We formulated them in **logic**. \rightsquigarrow Complexity of **model-checking**.

Start: questions originating from **graph algorithms**.

We formulated them in **logic**. \rightsquigarrow Complexity of **model-checking**.

For MSO₂, a fundamental division line in graph theory

→ division lines in **complexity** and in **finite model theory**.

Start: questions originating from **graph algorithms**.

We formulated them in **logic**. \rightsquigarrow Complexity of **model-checking**.

For MSO₂, a fundamental division line in graph theory

→ division lines in **complexity** and in **finite model theory**.

For FO, a logic-motivated branch of graph theory: Sparsity.

Start: questions originating from **graph algorithms**.

We formulated them in logic. → Complexity of model-checking.
For MSO₂, a fundamental division line in graph theory
→ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.
Beyond subgraph-closed classes → Notions from model theory.

Start: questions originating from **graph algorithms**.

We formulated them in logic. → Complexity of model-checking.
For MSO₂, a fundamental division line in graph theory
→ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes \rightsquigarrow Notions from **model theory**.

A fundamental puzzle with many facets.

Start: questions originating from **graph algorithms**.

We formulated them in logic. → Complexity of model-checking.
For MSO₂, a fundamental division line in graph theory
→ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.
Beyond subgraph-closed classes → Notions from model theory.

A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets.

Start: questions originating from **graph algorithms**.

We formulated them in logic. → Complexity of model-checking.
For MSO₂, a fundamental division line in graph theory
→ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.
Beyond subgraph-closed classes → Notions from model theory.

A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets. Mathematics is not only about **depth**, but also about **connections**.

Start: questions originating from **graph algorithms**.

We formulated them in logic. → Complexity of model-checking.
For MSO₂, a fundamental division line in graph theory
→ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.
Beyond subgraph-closed classes → Notions from model theory.

A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets. Mathematics is not only about **depth**, but also about **connections**.

- Don't be afraid to try multiple new areas.

Start: questions originating from **graph algorithms**.

We formulated them in logic. → Complexity of model-checking.
For MSO₂, a fundamental division line in graph theory
→ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.
Beyond subgraph-closed classes → Notions from model theory.

A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets. Mathematics is not only about **depth**, but also about **connections**.

- Don't be afraid to try multiple new areas.
- Learning by trying.

Start: questions originating from **graph algorithms**.

We formulated them in logic. → Complexity of model-checking.
For MSO₂, a fundamental division line in graph theory
→ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.
Beyond subgraph-closed classes → Notions from model theory.

A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets. Mathematics is not only about **depth**, but also about **connections**.

- Don't be afraid to try multiple new areas.
- Learning by trying.

Thanks for attention!

Michał Pilipczuk Logic meets graphs and algorithms