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Graph algorithms

Area of graph algorithms:
— I: A graph G and some parameters k.

— Q: Decide the existence of some object based on G and k.

Examples:
— CriQuE: Does G have k pairwise adjacent vertices?
— 3-CoLoRING: Does G have a proper coloring using 3 colors?

— HamiLtoniciTy: Does G have a cycle visiting every vertex once?
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Meta-theorems

Typical: Take a problem P, solve it efficiently on some class € of graphs.
— Often highly non-trivial and problem-dependent.

— Common denominators: techniques that work for certain problems.

Idea: Look at classes of problems.

— For instance, all problems expressible in a logic L.

Theorem (Meta-theorem template)

Every problem expressible in £ can be solved in time Blah

on every graph from €.

Explains the range of applicability of certain techniques.

Model-checking £ on %: Given ¢ € L and G € %, decide G |~ .
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CLIQUE, = Ix;3x...3xk /\i# [(xi # x;) A adj(x;, x;)]

First-Order logic (FO):

— variables for single vertices, can check adjacency

3-CoLorING = JAIBIC (A, B, C) is a partition of V and

every two adjacent vertices are colored differently

Monadic Second-Order logic, first variant (MSO,):

— variables for single vertices and sets of vertices, can check membership

HamiLToNIcITY = IS C E  Sis connected and

every vertex is incident to exactly two edges of S

Monadic Second-Order logic, second variant (MSO,):

— vars for (sets of) vertices & edges, can check membership & incidence
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MSO, on graphs: complexity
HamiLToNiCITY is NP-complete ~~ MC MSO, intractable on general graphs

Obs: Every MSO,-definable problem can be decided in time O(n)

on colored paths.
That is, model-checking MSO; in time f(y) - n.

Sketch:
— Colored path ~~ Word w € ¥*.
— Sentence ¢ defining the problem ~» Finite automaton A

— Just run A on w in linear time.
90 & 0@ 0 O—C—=90
a b b b a a
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Treewidth

The same idea will work on colored trees. (MSO on trees = tree automata)

Q: How far can we go?

Definition (Treewidth)
A graph has treewidth k if it can be confined

to a tree of bags, each of size < k.

Theorem (Courcelle)
For every fixed k, every MSO,-definable problem can be decided

in linear time on graphs of treewidth < k.
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Grid minors

Is this it? Can we go beyond bounded treewidth?
Q: How do graphs of large treewidth look like?

Theorem (Excluded Grid Minor)
There is a function f: N — N such that if the treewidth of G
is larger than f(k), then G contains a k x k grid minor.
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Complexity of MSO, model-checking

Consider a class of graphs €.

% has bnd treewidth =

Every MSO,-definable problem solvable in linear time

% has unbnd treewidth =
% contains arbitrarily large grid minors ="
Model-checking MSO, on colored graphs from &

is as hard as on general graphs.

Reason: Encode an arbitrary

adjacency matrix in a grid minor.
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Dichotomy
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graph theory

% has bounded treewidth.

MSO, model-checking on colored &
in time f(p) - n.

In colored & one can MSO,-interpret

only tree-like graphs.
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Dichotomy
Consider a graph class €. Then either:

graph theory
¢ has bounded treewidth. ¢ has arbitrarily large grid minors.

algorithms
MSO, model-checking on colored & MSO, model-checking on colored &

in time f(p) - n. . as hard as on general graphs.
finite model theory

In colored & one can MSO,-interpret In colored € one can MSO,-interpret

only tree-like graphs. all graphs.
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Towards a characterization for FO

The theorem of GKS originates from the theory of Sparsity.

— A wealth of graph-theoretic tools for nowhere dense classes.

There are classes of dense graphs where FO model-checking is tractable.
— cliques;
— for any nowhere dense %, edge-complements of €,

— any class of bounded cliquewidth.

Q: Proposition for ?? in the following;:

Definition (Monadic dependence)
A class of graphs % is monadically dependent if one cannot

FO-interpret all graphs in colored graphs from .
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Monadic dependence

(Monadically) dependent (NIP) and (monadically) stable theories
are a central object of studies in model theory.
— There is a toolbox... but applies to an inherently infinite setting.

— For example, nowhere dense = superflat.

Goal: Understand it and apply the toolbox to classes of finite graphs.

I HAVE NO
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Intermediate logic

Can we find natural variants of logic between FO and MSO?

MSOjy  ¢-mmmmmmmmrm e > bnd treewidth
U N
MSO; ¢ > bnd cliquewidth
U
FO + conn  ¢----------- > top-minor-free
U M
FO  «-------omom--- » nowhere dense

Proposition: logic FO + conn corresponds to topological-minor-free classes.
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FO + conn

Def: G = conn(s, t, uy, . . ., uy)

if s and t can be connected by a path avoiding uy, .. ., u.
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FO + conn
Def: G = conn(s, t, uy, . . ., uy)

if s and t can be connected by a path avoiding uy, .. ., u.

FO + conn is FO where you can also use conn predicates.

See [Bojanczyk; 217] and [Schirrmacher, Siebertz, Vigny; this CSL!].

Def: ¢ is top-minor-free if there is t € N such that
no graph G € € contains a subdivision of K;.

Theorem (P, Schirrmacher, Siebertz, Torufczyk, Vigny; 217)
Suppose % is a class of graphs closed under taking subgraphs. Then:
— % top-minor-free = MC FO + conn in time f(p) - n.
— % not top-minor-free =* MC FO + conn hard as on general graphs.
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FO + conn
Def: G = conn(s, t, uy, . . ., uy)

if s and t can be connected by a path avoiding uy, .. ., u.

FO + conn is FO where you can also use conn predicates.

See [Bojanczyk; 217] and [Schirrmacher, Siebertz, Vigny; this CSL!].

Def: ¢ is top-minor-free if there is t € N such that
no graph G € € contains a subdivision of K;.

Theorem (P, Schirrmacher, Siebertz, Torufczyk, Vigny; 217)
Suppose % is a class of graphs closed under taking subgraphs. Then:
— % top-minor-free = MC FO + conn in time f(p) - n.
— % not top-minor-free =* MC FO + conn hard as on general graphs.

Key: A known decomposition into parts where FO + conn reduces to FO.
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Wrap-up

Start: questions originating from graph algorithms.

We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.

For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.

Michat Pilipczuk Logic meets graphs and algorithms

15/ 15



Wrap-up
Start: questions originating from graph algorithms.
We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.

A fundamental puzzle with many facets.

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up
Start: questions originating from graph algorithms.
We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.
A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets.

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up
Start: questions originating from graph algorithms.
We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.
A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets.

Mathematics is not only about depth, but also about connections.

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up
Start: questions originating from graph algorithms.
We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.
A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets.
Mathematics is not only about depth, but also about connections.

— Don’t be afraid to try multiple new areas.

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up
Start: questions originating from graph algorithms.
We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.
A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets.
Mathematics is not only about depth, but also about connections.
— Don’t be afraid to try multiple new areas.

— Learning by trying.

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



Wrap-up
Start: questions originating from graph algorithms.
We formulated them in logic. ~»  Complexity of model-checking.

For MSO,, a fundamental division line in graph theory

~+ division lines in complexity and in finite model theory.
For FO, a logic-motivated branch of graph theory: Sparsity.

Beyond subgraph-closed classes ~» Notions from model theory.
A fundamental puzzle with many facets.

Understanding the puzzle requires understanding all the facets.
Mathematics is not only about depth, but also about connections.
— Don’t be afraid to try multiple new areas.
— Learning by trying.

Thanks for attention!

Michat Pilipczuk Logic meets graphs and algorithms 15/ 15



