Demystifying problem solving

Dmitry Chistikov

University of Warwick, United Kingdom

Logic Mentoring Workshop 14 February 2022 In seeking "indicators of suspicion" in investigations, suspects will need to have had:

- Motive to commit the crime (for example, financial gain or to seek revenge)
- · Means to commit the crime (including tools and physical capabilities)
- Opportunity to commit the crime (including being at the crime scene at the time of the offence)

- Wikipedia on criminal investigation

In seeking "indicators of suspicion" in investigations, suspects will need to have had:

- Motive to commit the crime (for example, financial gain or to seek revenge)
- · Means to commit the crime (including tools and physical capabilities)
- Opportunity to commit the crime (including being at the crime scene at the time of the offence)

Problem: Factorise a given number.

Problem: Factorise a given number.

Problem: Factorise a given number.

Which of the following are valid solutions?

► $5 = 5 \cdot 1$

Problem: Factorise a given number.

Problem: Factorise a given number.

- $\blacktriangleright 5 = 5 \cdot 1$
- ▶ $5 = (2+i) \cdot (2-i)$
- ▶ No factorisation exists for 5

Problem: Factorise a given number.

- $\blacktriangleright 5 = 5 \cdot 1$
- ► $5 = (2+i) \cdot (2-i)$
- ▶ No factorisation exists for 5
- ▶ for d in [2;n): if d divides n then return " $d \cdot \frac{n}{d}$ "

Reinventing the wheel/bike

Don't get intimidated

George Dantzig (1914-2005)

Image source: mathshistory.st-andrews.ac.uk

Find the right place

the office

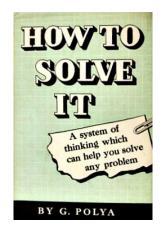

BBC

Image credit: BBC / IMDB (left); Iona, DO'Neil, Snowmanradio, Andreas Praefcke (all at Wikipedia) (right) 6/20

In seeking "indicators of suspicion" in investigations, suspects will need to have had:

- Motive to commit the crime (for example, financial gain or to seek revenge)
- Means to commit the crime (including tools and physical capabilities)
- Opportunity to commit the crime (including being at the crime scene at the time of the offence)

"There is an easier problem that you cannot solve: find it"

Image credit: Princeton University Press (from Wikipedia)

Engage with the problem! Guess and check // Trial and error Engage with the problem! Guess and check // Trial and error

Example: What does the following program do?

for
$$i := 1$$
 to n : do
for $j := 1$ to n : do
if $A[i] < A[j]$: then
swap $A[i]$ and $A[j]$

Tactics and strategy

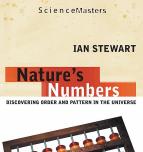
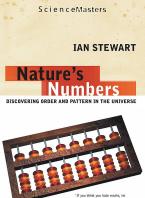



Image credit: Weidenfeld & Nicolson (via Amazon)

Tactics and strategy

Professor Stewart convince you otherwise' Daily Telegraph SHIP

C A T C O T C O G D O G

D O C K

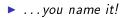
Image credit: Weidenfeld & Nicolson (via Amazon)

Tactics and strategy

G

Ρ S Н I

DOCK


Find the right questions!

"How many vowels do intermediate words have?"

Image credit: Weidenfeld & Nicolson (via Amazon)

Tricks of the trade:

- What if the vectors are linearly independent?
- What if we just have an AND of constraints?
- ► What if we already know what happens with n - 1?

Gobliins 2: The Prince Buffoon by Coktel Vision

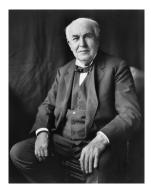
Gobliins 2: The Prince Buffoon by Coktel Vision

Take time to think!

In seeking "indicators of suspicion" in investigations, suspects will need to have had:

- Motive to commit the crime (for example, financial gain or to seek revenge)
 - · Means to commit the crime (including tools and physical capabilities)
 - Opportunity to commit the crime (including being at the crime scene at the time of the offence)

Image credit: Sandra Kiefer [Cluedo: German version]


Mistakes and setbacks

Henri Lebesgue (1875-1941)

Nikolai Luzin (1883-1950)

"I have not failed. I have just found 10,000 ways that won't work."

> — Attributed to Thomas Edison

"It is impossible to live without failing at something, unless you live so cautiously that you might as well not have lived at all — in which case, you fail by default."

- J. K. Rowling

Image source: Wikipedia - public domain (left), Sjhill, CC BY-SA 3.0 (right)

Impostor syndrome

"I'm a cheat" "Everyone knows more than I" "I'm not capable" "I am only here because of luck"

Impostor syndrome

"I'm a cheat" "Everyone knows more than I" "I'm not capable" "I am only here because of luck"

Everyone has it. No, really, everyone does!

Impostor syndrome

"I'm a cheat" "Everyone knows more than I" "I'm not capable" "I am only here because of luck"

Everyone has it. No, really, everyone does!

Refute this. Talk to your mentor, supervisor, friends. You are not alone!

Refute this. Talk to your mentor, supervisor, friends. You are not alone!

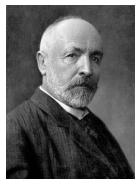
"Every time you talk to a friend about a result, give a talk, or post a paper—let alone publish one—you are sharing your ideas. Most would argue that this is the key to advancing science in all areas." Richard J. Lipton · Kenneth W. Regan

People, Problems, and Proofs

Essays from Gödel's Lost Letter: 2010

🖄 Springer

The problem might be difficult inherently. Fermat's Last Theorem: c. 1637-1995



Pierre de Fermat

Andrew J. Wiles

What looks simple in retrospect is not always easy to find.

Georg Cantor

1874: $[0,1] \cong [0,1]^2$?

1877:

$$\alpha = 0.a_1 a_2 \dots a_n \dots$$
$$\beta = 0.b_1 b_2 \dots b_n \dots$$
$$(\alpha, \beta) \leftrightarrow 0.a_1 b_1 a_2 b_2 \dots a_n b_n \dots$$

Things take time.

How to solve a problem?

- Understand the problem.
- Identify what works for you.
- Find an easier problem that you still cannot solve.
- Recognise that things take time.
- Remember that you are not alone!

References

- George Pólya. How to solve it: A new aspect of mathematical method. Princeton University Press, 1945.
- J. K. Rowling. Very good lives: The fringe benefits of failure and the importance of imagination. Little, Brown. 2015.
 Or: Commencement address at Harvard University, 2008, text and video available at https://news.harvard.edu/gazette/story/2008/06/ text-of-j-k-rowling-speech/.
- Richard J. Lipton and Kenneth W. Regan. People, problems, and proofs. Springer, 2013. And: Gödel's lost letter and P=NP. Blog. https://rjlipton.wordpress.com.
- Randall Munroe. (Lucky) Ten Thousand. https://xkcd.com/1053/
- [On 4-line program, spoilers upfront.] https://news.ycombinator.com/item?id=28758106.

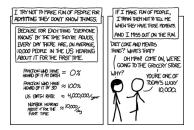


Image credit: xkcd.com